=== API === Manifold -------- The core functionality is found in the ``trajectory_manifold.manifold`` module. .. automodule:: trajectory_manifold.manifold :members: system_sensitivity, system_pushforward_weight, system_pushforward_weight_reweighted .. py:class:: trajectory_manifold.manifold.SolverParameters(NamedTuple) Stores Information for ODE Solvers. Records the parameters for solving an ODE using Diffrax, including the solver, tolerances, output grid size, and time horizon :param relative_tolerance: Relative tolerance for the ODE solution :param absolute_tolerance: Absolute tolerance for the ODE solution :param step_size: Output mesh size. Note: Does not impact internal computations. :param time_horizon: Length of the solution in seconds. :param solver: The particular ODE solver to use. Estimation ---------- The module ``trajectory_manifold.estimation`` contains functions related to probability. .. automodule:: trajectory_manifold.estimation :members: Optimization ------------ The module ``trajectory_manifold.optimize`` contains tools for optimization on the manifold of feasible trajectories. The main approach is the computation of pullbacks of gradients into the state space. .. automodule:: trajectory_manifold.optimize :members: Helpers ------- The module ``trajectory_manifold.helpers`` contains a collection of helper functions for the small modifications to linear algebra operations required in the project. .. automodule:: trajectory_manifold.helpers :members: Examples -------- The module ``trajectory_manifold.examples`` contains a collection of example systems to be used with the trajectory forecasting work. It contains functions which generate vector fields for a linear system, a periodic system, and a chaotic system. .. automodule:: trajectory_manifold.examples :members: